QSO outflows and IXO

Mat Page MSSL-UCL

Contents:

- Motivation: what role do QSOs play in galaxy formation?
- Which QSOs do we need to look at?
- Submm emission in QSOs
- Winds from QSOs
- What we need to look for with IXO
- Winds from nearby AGN: we need the physics as well.

- The black hole/bulge mass relation tells us that the formation of spheroids and black holes are intimately linked.
- QSOs had their heyday at z~2.
 - Most vigorous period of black hole growth.
 - If black holes and stars grow together, QSOs should also be forming stars rapidly.

Peak of star formation rate also at 1< z < 3.

Hunt for star formation in QSOs using SCUBA / 850um 🚊 📗 🧲 📘

- **Drew samples of QSOs**
 - 1<z<3
 - close to L*
 - that we ought to be able to detect with SCUBA.
- Two samples of QSOs:
 - X-ray unabsorbed
 - X-ray absorbed

Here are the results:

Page et al. 2001, Science, 294, 2516
Page et al. 2004, ApJ, 611, L11
Stevens et al. 2005, MNRAS, 360, 610

X-ray absorbed and X-ray unabsorbed QSOs are completely different in submm, i.e. star formation.

What does this mean?

- X-ray absorbed QSOs are ULIRGs/hyperLIRGs
 - The objects have L_{FIR} between 1 and 4 times L_{AGN} must be star powered.
 - Can't be to do with orientation.
- Therefore they probably form part of an evolutionary sequence.
 - Bulge not finished yet earlier than typical QSOs.
 - Black holes already large must be later than typical submillimetre galaxies.
 - Only about 10% as numerous as normal QSOs.

X-ray absorbed QSOs are a brief transition stage between the ultraluminous starburst and the unobscured QSO phase.

XMM-Newton spectra

What is the absorption? cold gas or ionised gas?

- Cold absorbers:
 - χ^2/υ is OK, but funny residuals, abnormal distribution of Γ
 - Underlying spectra would not be normal for QSOs!
- lonised absorbers:
 - Reasonable fits, reasonable Γ , no funny residuals.

Page et al, MNRAS, in submission

Tells us: The absorbers are probably ionized We need much better X-ray spectra

Ionised winds and QSOs

- RGS on XMM-Newton has told us:
 - AGN ionised absorbers are almost always winds.
 - They contain little dust probably sublimated as it joins outflow.
 - Most of the absorbing gas seen <u>only</u> in the X-ray.
 - Even the weedy Seyferts of today can have large mass outflow rates M_{out} > M_{acc}.
- QSOs with ionised winds are rapidly forming stars.
- The winds are probably scaled up versions of Seyfert winds.
- Winds look to be very important in the evolutionary connection between AGN and galaxy formation.

These winds can eject a lot of material, so could they be fundamental to QSO evolution in general?

Completely different angle on importance of ionized winds in QSOs:

- UV BALs in 15% of QSOs
- Extremely faint in Xrays: heavily absorbed
- CIV 6x more common than MgII
- Higher ionisation lines only visible in X-rays
- Huge discovery potential for IXO

We won't find out what ionized winds do in QSOs until IXO.

- Take a "typical" QSO, simulate an IXO spectrum with a toy model.
- z=2, L=10^{44.5} (0.5-2 keV), Galactic column of 2 x 10²⁰ cm⁻²
- Add absorption lines from OVII, Fe
- Assume saturated lines with FWHM = 3000 km/s
- Include Fe UTA and 6.9 keV lines at similar to those in NGC3783.
- Illustrative only no edges, very few abs lines, no emission lines, power law continuum.
- Guilty confession*: simulated with TES response matrix from an ESA/ JAXA mission beginning with X, 100ks exposure

The results:

Fe UTA is easy

Other lines possible if broad

We can get the dynamics, column densities, outflow rates, abundances, etc for QSO outflows!

What about the Fe K lines?:

Fe K absorption lines almost impossible

We really need the low energy response on IXO!

BUT!We also need something else to understand ionized outflows in QSOs.

- We need to understand the <u>physics</u> of AGN outflows in bright, nearby AGN before we can apply it to our z=2 observations.
- Fantastic advances in the last 10 years, but our understanding is still terribly limited.
- <u>Fundamental</u> problem is that we have never had X-ray spectra with high enough resolution.

The best studied AGN warm absorber: NGC3783

Today's resolution

This is our current estimate of what the spectrum actually looks like.

Only the IXO XGS tells us what the spectrum actually does look like.

Tomorrow's resolution

UCL

- Today, we don't resolve the X-ray absorption line profiles in <u>any</u> AGN with <u>any</u> instrument.
 - We don't know if the X-ray source is fully covered.
 - We don't know what the velocity dispersions of the outflows are, or whether they consist of multiple components.
 - We don't know where they come from.
 - We can't be certain how much mass or energy is carried in the outflows.
 - We don't know how they are driven.
 - We don't know what they do to the AGN or to the surrounding galaxy.
- We need to resolve the absorption lines to answer all these fundamental questions.

Conclusions

- X-ray absorbed QSOs at z=2 have ionized winds, and are hosted by ultraluminous galaxies with huge star formation rates.
- The absorbed QSOs appear to represent a transitional phase between submillimetre galaxies and QSOs.
- These winds <u>could be</u> the terminators of star formation <u>and</u> accretion.
- Incidence of UV broad absorption lines as a function of ionization also shows that highly ionized X-ray absorbing winds could be very important in the evolution of QSOs.
- Huge discovery space for IXO in understanding the role of winds in QSO evolution.
- The IXO grating spectrometer is <u>fundamental</u> to show us how AGN winds work.
- Soft X-ray response of cryogenic spectrometer is <u>very</u> important to tell us about z~2, the epoch of galaxy formation.